Flattening and analytic continuation of affinoid morphisms: remarks on a paper of Gardener and Schoutens
نویسندگان
چکیده
We give an example of an affinoid curve without analytic continuation. We use this to produce an example of an affinoid morphism that cannot be flattened by a finite sequence of local blow-ups. Thus the global rigid analogue, [7], Theorem 2.3, of Hironaka’s complex analytic flattening theorem is not true. Since this is a key step in the proof of the affinoid elimination theorem, [7], Theorem 3.12, that proof contains a serious gap. We also give an example of an affinoid subset of the plane that is not the image under a proper rigid analytic map of a set that is globally semianalytic in the domain of that map. This clarifies the relationship among several natural categories of rigid subanalytic sets.
منابع مشابه
Flattening and Subanalytic Sets in Rigid Analytic Geometry
Let K be an algebraically closed field endowed with a complete nonarchimedean norm with valuation ring R. Let f : Y → X be a map of K-affinoid varieties. In this paper we study the analytic structure of the image f(Y ) ⊂ X; such an image is a typical example of a subanalytic set. We show that the subanalytic sets are precisely the D-semianalytic sets, where D is the truncated division function ...
متن کاملRigid Subanalytic Sets
Let K be an algebraically closed field endowed with a complete non-archimedean norm. Let f : Y → X be a map of K-affinoid varieties. In this paper we study the analytic structure of the image f(Y ) ⊂ X; such an image is a typical example of a subanalytic set. We show that the subanalytic sets are precisely the D-semianalytic sets, where D is the truncated division function first introduced by D...
متن کاملDescent for Non-archimedean Analytic Spaces
In the theory of schemes, faithfully flat descent is a very powerful tool. One wants a descent theory not only for quasi-coherent sheaves and morphisms of schemes (which is rather elementary), but also for geometric objects and properties of morphisms between them. In rigid-analytic geometry, descent theory for coherent sheaves was worked out by Bosch and Görtz [BG, 3.1] under some quasi-compac...
متن کاملRigid Analytic Flatificators
Let K be an algebraically closed field endowed with a complete non-archimedean norm. Let f : Y → X be a map of K-affinoid varieties. We prove that for each point x ∈ X, either f is flat at x, or there exists, at least locally around x, a maximal locally closed analytic subvariety Z ⊂ X containing x, such that the base change f−1(Z)→ Z is flat at x, and, moreover, g−1(Z) has again this property ...
متن کاملSOME REMARKS ON WEAKLY INVERTIBLE FUNCTIONS IN THE UNIT BALL AND POLYDISK
We will present an approach to deal with a problem of existence of (not) weakly invertible functions in various spaces of analytic functions in the unit ball and polydisk based on estimates for integral operators acting between functional classes of different dimensions.
متن کامل